CPC5

Eight County Freight Plan

East Central Intergovernmental Association \& Blackhawk Hills Regional Council

Project Sponsors

DeWitt
Chamber \& Development Company

ECONOMIC ALLIANCE

Business Growth ${ }_{\text {INC. }}$ Financing for Orowing Businesses

JO DAVIESS COHitry

Elizabeth

Presentation Map

Review of Progress To Date

Benefit-Cost Analysis

Next Steps

Eight County Freight Study

Eight County Freight Plan

East Central Intergovernmental Association \&
Blackhawk Hills Regional Council
Prepared br:
CPCS Transcom Inc.
In sssociation with
WSP | Parsons Brinckerhoff
American Transportation Res
American Transportation Research Institute

Key Tasks

- Physical System Inventory
- Commodity Flow Profile
- Freight System Needs Assessment
- Freight System

Recommendations \& Benefits Evaluation

- Stakeholder Outreach

Freight Plan Development Framework

Stakeholder Input

Freight Plan Vision

The Eight County Multimodal Freight System supports quality of life, growth and enables business retention and attraction, by providing safe, efficient, and reliable connections to regional, national, and global markets today and in the future.

Freight Plan Goals and Objectives

Goals

Reduce	Improve Disruptions to System Performance
Regional Connection to Freight Modes and Markets	
Reliable	Connection

> Freight system performance measures developed to align with objectives

"Top 3" Transportation Issues in Eight County Region

SurveyMonkey ${ }^{\circ}$

96 company responses

Note: Companies were able to provide multiple responses.

Freight Study Recommendations

Projects

- Spot highway improvements to address congestion and safety (next slide)
- Pavement improvements
- Bridge improvements
- New/improved intermodal and/or port facilities
- Transload/consolidation facilities
- Lock and dam improvements

Policies

- Truck regulation harmonization between Iowa and Illinois
- Illinois seasonal exemption for agricultural loads (up to 90,000 lbs.)
- Truck route guidance
- Freight-appropriate design standards

Programs

- Programs focused on highway and railway safety (including grade separations)
- Programs focused on enhancing skills of local workforce
- Programs focused on technology applications to the (freight) transportation system
- Freight planning program to monitor needs, issues and progress

Partnerships

- State, county and local public agency partnerships
- Federal transportation agencies, including USDOT and the USACE
- Regional and local economic development agencies
- Class I and short line railroads
- Airports
- Water ports
- Other local private industry/businesses

Project Gaps

Shown with Safety and Congestion Data

Note: Black circles show overlap between safety and congestion project gaps.

Project Gaps Listing

Route		Location
US-20	Old Castle Road to Old Hawkeye Road (Between Farley and Dyersville)	Safety
US-20	North Cascade (west end of Dubuque) to US-20 Frontage Road (East Dubuque)	Safety
US-20	N. Main Street to Franklin Street (North of Galena)	Safety, Congestion
US-20	Tapley Woods to IL-84 junction	Safety
US-20	Woodbine to S. Logemann Road	Safety
US-20	W. Salem Road to N. Bolton Road (Eleroy area)	Safety
US-20	Freeport Area (Includes IL-75)	Congestion
US-20	Farwell Bridge Road to Stephenson County Line	Safety
US-30	Grand Mound to DeWitt	Safety
US-30	Downtown Clinton	Safety, Congestion
US-30	IL-136 junction to IL-78 junction	Congestion
US-30	Sterling Area (includes IL-2 and IL-40)	Safety, Congestion
US-151	Dubuque Area	Congestion
IA-136	Delmar to Charlotte	Congestion
IL-78	Lowden Road to IL-40 (Mount Carroll area)	Safety
US-52	Mount Carroll to Lanark	Safety
IL-84	Savanna to Jo Daviess County Line	Safety
I-88	IL-78 to Lincoln Road	

Review of Progress To Date

Benefit-Cost Analysis

Next Steps

Benefit-Cost Analysis

Goal: "pre-test" potential freight-related improvements to understand their potential to generate public benefits, and the cost ranges where these improvements represent good investments

Stakeholders directed three analyses:

- US 20 Safety/Performance Corridor (IL)
- US 30 Multimodal Access Corridor (IA)
- East Dubuque Marine Terminal (serving IA and IL)

Methodology

1. Define Project at Concept Level

- Purpose, mode, location, and type and extent of improvements
- Change in performance: modeled or "what if" changes in highway mileage and travel time, highway crash rates, and/or user costs

2. Quantify Demand Ranges

- Current use and natural growth
- Induced growth, route diversion, modal diversion

3. Model Public Benefits

- Recent TIGER / INFRA guidance, plus modal diversion cost savings
- Good repair, economic competitiveness, livability, sustainability, safety

4. Calculate Benefit-Cost Ratios (BCRs)

Identify project costs that support a target $B C R$ Show how much investment may be warranted

US 20 Safety/Performance Corridor

US 20 Safety/Performance Corridor

Performance Factors	Current Condition	Improved US-20
Distance - US-20 Segment - Dubuque-Chicago - Dubuque-Rochelle	$\begin{aligned} & 47 \text { miles } \\ & 236 \text { miles (US-61/I-88) } \\ & 159 \text { miles (US 61/I-88) } \end{aligned}$	$\begin{gathered} 47 \text { miles } \\ 178 \text { miles (US-20/I-90) } \\ 116 \text { miles (US-20/I-90/I-39) } \end{gathered}$
Travel Time (AM Peak, Max) - US-20 Segment - Dubuque-Chicago - Dubuque-Rochelle	1:05 (44 mph) 4:20 (US-61/I-88) 2:40 (US-61/I-88)	$\begin{gathered} \text { 0:52 (54 mph) } \\ \text { 3:27 (US-20/I-90) } \\ \text { 2:17 (US-20/I-90/I-39) } \end{gathered}$
Crashes - Truck-Involved - Non-Truck Involved	$\begin{gathered} 175 / 6 \text { years }=29 \text { per year } \\ 1575 / 6 \text { years }=263 \text { per year } \end{gathered}$	30\% reduction 15% reduction
Time and Cost Savings (2016\$) - US-20 Segment Users - Dubuque-Chicago Users - Dubuque-Rochelle Users - Avoided Crash Savings	\$5.90 per one-way truck trip $\$ 79.70$ per one-way truck trip $\$ 51.70$ per one-way truck trip $\$ 8.4$ million per year	

US 20 Safety/Performance Corridor

Project Demand	Value	Comment
Truck AADT, Current US 20 Users (2015)	- Lowest Segment $=710$ - Average Segment $=1264$ - Highest Segment $=2400$	Assume lowest AADT segment is most representative
Truck AADT, Diverted US 20 Users	Assume diversion from US-61 / I88 could be half of current US 20 volume; split between Chicago and Rochelle	Conservative working assumption, should be verified by network modeling
Total Demand	1420 trips per day - 710 existing - 178 Chicago diversion - 178 Rochelle diversion No induced demand assumed	Safety benefit applies only to existing demand
Growth	1.1\% / year AADT growth for trucks; same for autos	Truck rate from FAF
Phasing	First analysis year $=2021$ Full diversion $=2023$	Assumed for BCA purposes
	い吅	

US 20 Safety/Performance Corridor

BCA Results

- Benefits over 30 years
- \$603 M (0\% discount)
- \$361 M (3\% discount)
- \$204 M (7\% discount)
- Justifiable investment at BCR of 1.5
- \$240 M (3\% discount)
- \$136 M (7\% discount)

Underlying demand numbers should be confirmed by more detailed study

- Current assumptions are believed reasonable, but the reality may be higher or lower

Benefit Summary (0\% Discounting)

Economic Competitiveness	$\$$	$271,931,268$	45.1%
State of Good Repair	$\$$	$6,270,851$	1.0%
Sustainability	$\$$	$7,799,216$	1.3%
Safety	$\$$	$316,737,937$	52.5%
Total Benefit	$\mathbf{\$}$	$\mathbf{6 0 2 , 7 3 9 , 2 7 2}$	100.0%
Project Cost	$\mathbf{\$}$	$\mathbf{4 0 1 , 8 2 6 , 1 8 1}$	
BCR		$\mathbf{1 . 5 0}$	

Benefit Summary (3\% Discounting)

Economic Competitiveness	$\$$	$161,470,284$	44.8%
State of Good Repair	$\$$	$3,715,008$	1.0%
Sustainability	$\$$	$5,076,327$	1.4%
Safety	$\$$	$\mathbf{1 9 0 , 4 2 6 , 8 9 5}$	52.8%
Total Benefit	$\mathbf{\$}$	$\mathbf{3 6 0 , 6 8 8 , 5 1 5}$	100.0%
Project Cost BCR	$\mathbf{\$}$	$\mathbf{2 4 0 , 4 5 9 , 0 1 0}$	

Benefit Summary (7\% Discounting)

Economic Competitiveness	$\$$	$90,186,077$	44.2%
State of Good Repair	$\$$	$2,066,932$	1.0%
Sustainability	$\$$	$3,180,035$	1.6%
Safety	$\$$	$108,558,524$	53.2%
Total Benefit	$\$$	$\mathbf{2 0 3 , 9 9 1 , 5 6 9}$	100.0%
Project Cost	$\$$	$\mathbf{1 3 5 , 9 9 4 , 3 7 9}$	
BCR		$\mathbf{1 . 5 0}$	

US 30 Multimodal Access Corridor

US 30 Multimodal Access Corridor

Performance Factors	Current Condition	Future with Improvements
Distance		
- US-30 Segment	47 miles	47 miles
- Clinton to Cedar Rapids	112 miles (US-30/US-61/I-80)	84 miles (US-30)

Travel Time (AM Peak)

- US-30 Segment
- Clinton to Cedar Rapids
1:47 (US-30/US-61/I-80)
0:44 (64 mph)

$0: 55(51 \mathrm{mph})$	$0: 44(64 \mathrm{mph})$
$1: 47$ (US-30/US-61/I-80)	$1: 24($ US-30 $)$

Crashes

- Truck-Involved
- Non-Truck Involved

Time and Cost Savings (2016\$)

- US-30 Segment
- Alt Route Users
- Avoided Crash Savings
$136 / 6$ years $=23$ per year 517 / 6 years $=86$ per year
30% reduction
15% reduction
\$4.99 per one-way truck trip $\$ 37.30$ per one-way truck trip $\$ 2.6$ million per year

US 30 Multimodal Access Corridor

Project Demand	Value	Comment
Truck AADT, Current US 20 Users	Lowest Segment $=447$ Average Segment $=493$ Highest Segment $=720$	Assume lowest segment is most representative
Truck AADT, Diverted US 30 Users	Assume diversion from US-61 / I-88 is equal to current US 30 volume; all for Cedar Rapids	Working assumption, should be verified by network modeling
Truck AADT, Induced Demand, US 30 Users	Assume add'I growth equal to half of current traffic is driven by Cedar Rapids and US 30served barges	Assume this traffic would otherwise be accommodated on IA roads with comparable VMT and crash impacts, so no effect on BCA
Total Demand	1118 trips per day - 447 existing - 447 diverted - 224 induced	Safety benefit applies only to existing demand
Growth	1.1\% / year AADT growth for trucks; same for autos	Truck rate from FAF
Phasing	First analysis year $=2021$ Full diversion $=2023$ Full induced growth $=2025$	Assumed for BCA purposes

US 30 Multimodal Access Corridor

BCA Results

- Benefits over 30 years
- \$272 M (0\% discount)
- \$162 M (3\% discount)
- \$91 M (7\% discount)
- Justifiable investment at BCR of 1.5
- \$108 M (3\% discount)
- \$61 M (7\% discount)

Underlying demand numbers should be confirmed by more detailed study

- Current assumptions are believed reasonable, but the reality may be higher or lower

Benefit Summary (0\% Discounting)

Economic Competitiveness	$\$$	$186,246,541$	68.6%
State of Good Repair	$\$$	$4,365,668$	1.6%
Sustainability	$\$$	$5,429,691$	2.0%
Safety	$\$$	$75,639,189$	27.8%
Total Benefit	$\mathbf{\$}$	$\mathbf{2 7 1 , 6 8 1 , 0 8 9}$	100.0%
Project Cost	$\mathbf{\$}$	$\mathbf{1 8 1 , 1 2 0 , 7 2 6}$	
BCR		$\mathbf{1 . 5 0}$	

Benefit Summary (3\% Discounting)

Economic Competitiveness	$\$$	$110,534,957$	68.2%
State of Good Repair	$\$$	$2,586,330$	1.6%
Sustainability	$\$$	$3,534,059$	2.2%
Safety	$\$$	$45,475,247$	28.0%
Total Benefit	$\mathbf{\$}$	$\mathbf{1 6 2 , 1 3 0 , 5 9 3}$	100.0%
Project Cost	$\mathbf{\$}$	$\mathbf{1 0 8 , 0 8 7 , 0 6 2}$	
BCR		$\mathbf{1 . 5 0}$	

Benefit Summary (7\% Discounting)

Economic Competitiveness	$\$$	$61,684,262$	67.6%
State of Good Repair	$\$$	$1,438,966$	1.6%
Sustainability	$\$$	$2,213,891$	2.4%
Safety	$\$$	$25,924,519$	28.4%
Total Benefit	$\mathbf{\$}$	$\mathbf{9 1 , 2 6 1 , 6 3 7}$	100.0%
Project Cost	$\mathbf{\$}$	$\mathbf{6 0 , 8 4 1 , 0 9 2}$	
BCR		$\mathbf{1 . 5 0}$	

Dubuque Area Marine Terminal Enhancement

	Concept-Level Project Definition
Purpose	Improve Marine Terminal capacity in the Dubuque area to accommodate a broad range of higher-value ro-ro, break-bulk, and project cargo; does not include containers, liquid bulk, or dry bulk
Mode	Marine
Location	IEI Terminal off US 20 in East Dubuque, IL
Type and Extent	Upland improvements (storage areas/structures, equipment, etc.) to integrate new cargo types and customers into existing terminal

Dubuque Area Marine Terminal Enhancement

Performance Factors
 Dubuque Market Shed-MSP
 - Transport Cost, 18-ton unit

Current (All Truck)

Future (Truck/Barge)

Dubuque Market Shed-St Louis

- Transport Cost, 18-ton unit

Dubuque Market Shed-Memphis

- Transport Cost, 18 ton unit

Dubuque Market Shed-South LA

- Transport Cost, 18-ton unit

253 miles + /- 150 miles
\$184-\$452-\$720
335 miles +/- 150 miles
\$330-\$598-\$866
619 miles +/- 150 miles \$838-\$1106-\$1374 \$723

1000 miles + /- 150 miles \$1518-\$1786-\$2054

MARKET SHEDS AND DRAYAGE: Assumes 75 -mile market shed radius for Dubuque Area (Cedar Rapids, Davenport, Rockford, and Madison) and comparable market shed radii for partner markets.

COST NOTES: Barge costs include drayage costs (37.5 miles average at each end with empty returns), water transport costs ($\$ 0.03-\$ 0.05$ per highway equivalent ton-mile), and terminal charges, but exclude time and inventory costs; time-sensitive commodities will not choose barge regardless of cost.

LOAD FACTOR NOTES: Barge's advantage is based on cost per ton-mile efficiencies. This analysis assumes 22 ton unit moves, equivalent to a fully loaded truck. With higher tonnage shipments requiring OSOW handling or multiple truck moves, barge will have a greater advantage.

Dubuque Area Marine Terminal Enhancement

Project Demand
75-mile radius
27 counties
IA, IL, WI

Freight Analysis Framework (2014)

Articles of Base Metal; Chemical Products; Machinery; Misc. Manufactured Products; Motorized Vehicles; Newsprint/Paper; Nonmetallic Mineral Products; Paper Articles; Plastics/Rubber; Precision Instruments; Printed Products; Transportation Equipment; Wood Products

Partner Market (BEA Level)

- Minneapolis-St. Paul
- St. Louis
- Memphis
- Baton Rouge/New Orleans

Current Truck Tons (2014)
1,148,548
521,047
73,430
78,741

Market Capture Model

- Minneapolis-St. Paul
- St. Louis
- Memphis
- Baton Rouge/New Orleans

Total

Potential Capture 28,184 (2.5\%)
26,053 (5.0\%)
5,507 (7.5\%)
7,874 (10.0\%)
68,148 (3.7\%)

1,821,776

	Potential Capture	3,786 truckloads / year
	28,184 (2.5\%)	73 truckloads / week
	26,053 (5.0\%)	First analysis year =
	5,507 (7.5\%)	2021; full market
	7,874 (10.0\%)	absorption $=2023$
Total	68,148 (3.7\%)	Growth = 1.1\% / year (FAF Truck Growth)

Dubuque Area Marine Terminal Enhancement

BCA Results

- Benefits over 30 years with user cost savings
- \$32.2 M (0\% discount)
- \$19.2 M (3\% discount)
- \$10.8 M (7\% discount)
- Justifiable investment at BCR of 1.5
- \$12.8 M (3\% discount)
- \$7.2 M (7\% discount)
- User cost savings from modal diversion (not allowed in current federal BCA guidance) represents $62-63 \%$ of benefits

Benefit Summary (0\% Discounting)

Economic Competitiveness	$\$$	$20,210,988$	62.7%
State of Good Repair	$\$$	$2,008,075$	6.2%
Sustainability	$\$$	$1,736,445$	5.4%
Safety	$\$$	$8,272,992$	25.7%
Total Benefit	$\mathbf{\$}$	$\mathbf{3 2 , 2 2 8 , 5 0 0}$	100.0%
Project Cost	$\mathbf{\$}$	$\mathbf{2 1 , 4 8 5 , 6 6 7}$	
BCR		$\mathbf{1 . 5 0}$	

Benefit Summary (3\% Discounting)

Economic Competitiveness	$\$$	$11,973,493$	62.4%
State of Good Repair	$\$$	$1,189,633$	6.2%
Sustainability	$\$$	$1,130,122$	5.9%
Safety	$\$$	$4,901,127$	25.5%
Total Benefit	$\mathbf{\$}$	$\mathbf{1 9 , 1 9 4 , 3 7 5}$	100.0%
Project Cost	$\mathbf{\$}$	$\mathbf{1 2 , 7 9 6 , 2 5 0}$	
BCR		$\mathbf{1 . 5 0}$	

Benefit Summary (7\% Discounting)

Economic Competitiveness	$\$$	$6,661,734$	61.9%
State of Good Repair	$\$$	661,881	6.2%
Sustainability	$\$$	707,892	6.6%
Safety	$\$$	$2,726,857$	25.3%
Total Benefit	$\mathbf{\$}$	$\mathbf{1 0 , 7 5 8 , 3 6 4}$	100.0%
Project Cost	$\mathbf{\$}$	$\mathbf{7 , 1 7 2 , 2 4 3}$	
BCR		$\mathbf{1 . 5 0}$	

Conclusions and Next Steps

Main Findings

- As analyzed, all three project concepts offer public benefit, but support very different levels of public investment
- US 20 and US 30 projects have high benefits, and could support high costs; good news, since these projects are likely to be expensive
- Barge terminal improvements have modest benefits, but could probably be accomplished with very modest expenditures
- Substantial work is needed to:
- Further define the location, type, and extent of project improvements
- Further develop/confirm the demand estimates
- Estimate construction and operating costs
- "Value engineer" the program concepts to maximize BCA and ROI metrics
- Overall, the analysis suggests there is "something there" to be explored further, if desired, for each project concept

Presentation Map

Review of Progress To Date

Benefit-Cost Analysis

Next Steps

Our Next Steps...

- Formalize freight plan recommendations (Working Paper 4)
- Develop final report (Executive Summary-style)

Questions \& Discussion

Erika Witzke, PE
Project Manager
ewitzke@cpcstrans.com

Alan Meyers
Freight + Logistics Consultant
alan.meyers@wsp.com

